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Abstract

The jet shape is a simple measure of how widely a jet’s energy is spread. At
present jet shape distributions have only been calculated to leading order
in perturbative QCD. In this paper we consider how much these predictions
should be affected by higher order perturbative corrections, by resummation
of enhanced corrections to all orders, and by (power-suppressed) non-
perturbative corrections. We also show that current cone-type jet definitions
are not infrared safe for final states with more than three partons. Unless
this situation is rectified by using improved definitions, hadron collider
experiments will never be able to study the internal properties of jets with
the quantitative accuracy already achieved in e+e− annihilation.

RAL-97-026
July 1997

http://aps.arXiv.org/abs/hep-ph/9707338v3
http://aps.arXiv.org/abs/hep-ph/9707338


1 Introduction

Hadron collisions at the Tevatron are a prolific source of high transverse momentum jets.
The collider experiments, CDF and DØ, have made very high precision measurements
of the inclusive jet rates[1,2], as well as the rate of n-jet events, n ≥ 2[3,4]. At present,
perturbative calculations extend to next-to-leading order (NLO) for the inclusive[5,6,7]
and dijet[8,9] rates and the NLO three-jet rate is close to completion[10]. These allow
quite precise studies of QCD, albeit for very inclusive quantities.

At NLO, the cross sections begin to depend on the exact definition of the jets, since
the jets begin to develop internal structure. The experiments have used measures of this
internal structure as a cross-check on the reliability of the calculations, as well as as a
study of QCD in its own right. In fact, as we shall argue, these more exclusive event
properties contain considerably more information about QCD dynamics, and make an
ideal place to study QCD.

One of the most popular measures of jet structure in hadron collisions is the ‘jet
shape’: the fraction of the jet’s energy within a cone of a given size, centred on the jet
direction. This has been measured by both CDF and DØ over wide ranges of phase
space[11,12]. It has also been measured in photoproduction by the ZEUS collabora-
tion[13] with essentially the same method, so in this context we can class photopro-
duction as a hadron collision. Making these studies in photoproduction has several
advantages that offset the fact that they cannot reach as high jet ET . The direct com-
ponent of the photon means that events can be selected with very little underlying event
activity. Once these are understood, one can change the kinematic cuts to bring in the
resolved component and thereby study the underlying event contribution in detail. Sim-
ilarly, by varying the event kinematics, one can vary the quark/gluon jet mix in a way
that is under much better perturbative control than in hadron collisions.

The NLO prediction of jet rates gives a leading order (LO) prediction of the jets’
internal structure[14]. Thus the calculations with which the experiments have so far
compared are not expected to be terribly accurate. In this paper we discuss the extent
to which this could be improved by including higher order terms in perturbation theory,
by summing terms to all orders, and by including an account of hadronization. The
main conclusion is that these effects together constitute a very large effect on the jet
shape, and we should not be surprised if the LO calculations do not give very good fits
to data.

As part of this study, we considered how reliable the jet definitions used by most
experiments are for these kinds of study. The conclusion is that they are not very reliable.
In order to make quantitative comparisons with theory beyond LO, this situation must
be improved, either by using a cluster-type algorithm, or by a simple modification of
existing cone-type algorithms. Because of this, we have not compared our results with
existing experimental measurements. Our emphasis is instead on understanding what
physical effects are important in determining the jet shape, how large various terms are,
and how accurate a future, more complete, calculation could be.
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We begin in Sect. 2 by reviewing the jet definitions in current use. In a simple
approximation, we make an order by order expansion, and show that calculations for
current cone-based definitions will break down at next-to-next-to-leading order (NNLO)
for jet cross sections (and therefore at NLO for internal jet properties). We discuss a
simple remedy, and show that this has a well-defined perturbative expansion.

Section 3 contains the real substance of the paper, in which we calculate the jet shape
in several steps, with ever-increasing accuracy. We start at LO, then add higher orders
in perturbation theory, followed by running coupling effects, all-orders resummation of
enhanced terms and (power-suppressed) hadronization corrections.

A recent paper[15] proposed using the first moment of the jet shape as a probe of the
jet shape that is less susceptible to non-perturbative corrections. In Sect. 4 we consider
this in the light of our studies, and find that it is not significantly better than the full
distribution.

Finally in Sect. 5 we discuss the implications of our results and the outlook for the
future.

2 Jet definitions, safeness and jet cross sections

By now, collider experiments are used to comparing their data with NLO calculations.
As a result, all currently-used jet definitions are infrared and collinear safe to at least
NLO, i.e. when there can be up to two partons in a jet. However, this is not sufficient
to guarantee a well-defined perturbative expansion, because unsafe behaviour can still
arise at higher orders, i.e. when there can be many partons in a jet.

Up to now, these issues have not had to be discussed in detail. This is because
the data have always been compared either with NLO calculations, or with hadron-
level Monte Carlo event generators. In the former, the jet definitions are infrared and
collinear safe by construction. In the latter, the typical hadronic scale ∼ 1 GeV cuts
off all divergent integrals, yielding finite, but fundamentally non-perturbative, cross
sections.

Since in this paper we aim to calculate, at least approximately, the effect of high
perturbative orders, we are forced to tackle these issues head-on. In this section, we
discuss the two main jet algorithms in current use: the k⊥ algorithm[16] and the iterative
cone algorithm[17]. While the first is safe to all orders in perturbation theory, we shall
see that the second falls into a class that we call ‘almost unsafe’, to be defined shortly.
We show that a simple modification, proposed by Steve Ellis many years ago[18], renders
it safe to all orders.

Since each experiment has defined their own slightly different version of the iterative
cone algorithm, we concentrate on just one of them, the DØ algorithm1, and only

1We are grateful to members of the DØ collaboration for making full details of their algorithm
available to us[19].
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indicate the differences with respect to other versions where relevant.

2.1 Jet definitions

All the algorithms we discuss define the momentum of a jet in terms of the momenta
of its constituent particles in the same way, inspired by the Snowmass accord[20]. The
transverse energy, ET , pseudorapidity, η, and azimuth, φ, are given by:

ET jet =
∑

i∈jet

ET i,

ηjet =
∑

i∈jet

ET i ηi/ET jet, (1)

φjet =
∑

i∈jet

ET i φi/ET jet.

We shall always use boost-invariant variables, so whenever we say ‘angle’, we mean the

Lorentz-invariant opening angle Rij =
√

(ηi − ηj)2 + (φi − φj)2. Also, whenever we say
‘energy’, we mean transverse energy, ET = E sin θ.

2.1.1 The k⊥ algorithm

We discuss the fully-inclusive k⊥ algorithm including an R parameter[21]. It clusters
particles (partons or calorimeter cells) according to the following iterative steps:

1. For every pair of particles, define a closeness

dij = min(ET i, ETj)
2R2

ij

(

≈ min(Ei, Ej)
2θ2

ij ≈ k2
⊥

)

. (2)

2. For every particle, define a closeness to the beam particles,

dib = E2
T iR

2. (3)

3. If min{dij} < min{dib},merge particles i and j according to Eq. (1) (other merging
schemes are also possible[16]).

4. If min{dib} < min{dij}, jet i is complete.

These steps are iterated until all jets are complete. In this case, all opening angles
within each jet are < R and all opening angles between jets are > R.

2.1.2 The DØ algorithm

Since this is the main algorithm we shall study, we define it in full detail. It is based on
the iterative-cone concept, with cone radius R. Particles are clustered into jets according
to the following steps:
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1. The particles are passed through a calorimeter with cell size δ0×δ0 in η×φ (in DØ,
δ0 = 0.1). In the parton-level algorithm, we simulate this by clustering together
all partons within an angle δ0 of each other.

2. Every calorimeter cell (cluster) with energy above E0, is considered as a ‘seed cell’
for the following step (in DØ, E0 = 1 GeV).

3. A jet is defined by summing all cells within an angle R of the seed cell according
to Eq. (1).

4. If the jet direction does not coincide with the seed cell, step 3 is reiterated, re-
placing the seed cell by the current jet direction, until a stable jet direction is
achieved.

5. We now have a long list of jets, one for each seed cell. Many are duplicates: these
are thrown away2.

6. Some jets could be overlapping. Any jet that has more than 50% of its energy
in common with a higher-energy jet is merged with that jet: all the cells in the
lower-energy jet are considered part of the higher-energy jet, whose direction is
again recalculated according to Eq. (1).

7. Any jet that has less than 50% of its energy in common with a higher-energy jet
is split from that jet: each cell is considered part only of the jet to which it is
nearest.

Note that despite the use of a fixed cone of radius R, jets can contain energy at angles
greater than R from their direction, because of step 6. This is not a particular prob-
lem. This is essentially also the algorithm used by ZEUS (PUCELL), except that their
merging/splitting threshold is 75% instead of 50%.

2.1.3 The CDF algorithm

The CDF algorithm is rather similar to DØ’s, but with a different splitting procedure:

6. Any jet that has more than 75% of its energy in common with a higher-energy jet
is merged with that jet: all the cells in the lower-energy jet are considered part of
the higher-energy jet, whose direction is again recalculated according to Eq. (1).

7. Any jet that has less than 75% of its energy in common with a higher-energy jet
is split from that jet: each cell is considered part only of the jet to which it is
nearest. The directions of the two jets are then recalculated by iterating step 3.

2In DØ, any with energy below 8 GeV are also thrown away. For jets above 16 GeV, this makes
only a small numerical difference, which is not important to our discussion, so we keep them.
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2.2 Infrared and collinear safeness

The formal definition of infrared safeness is as follows:

An observable is infrared safe if, for any n-parton configuration,
adding an infinitely soft parton does not affect the observable at all.

(4)

The formal definition of collinear safeness is similar:

An observable is collinear safe if, for any n-parton configuration,
replacing any massless parton by an exactly collinear pair of mass-
less partons does not affect the observable at all.

(5)

We distinguish three types of observable:

Safe: Both the above conditions are fulfilled. Cross sections are calculable order
by order in perturbation theory, with hadronization effects resulting in only power-
suppressed corrections.

Unsafe: One or both the conditions is violated. Cross sections are infinite in
perturbation theory, signalling that they are fundamentally non-perturbative.

Almost unsafe: At first sight it appears that one or both the conditions is violated,
but in fact close inspection of the algorithm shows that seemingly-minor details
actually rescue its safeness. Cross sections are calculable order by order in pertur-
bation theory, but can be rather unreliable, owing to the reliance on (typically)
small parameters.

Unsafe or almost unsafe algorithms often seem perfectly safe up to a certain order in
perturbation theory, after which their unsafeness reveals itself. This is the case in the
iterative cone algorithm, in both its DØ and CDF variants, which are almost unsafe,
despite being fully safe at NLO. As we shall shortly show, it is the fact that the particles
have been passed through a calorimeter, with finite cell size and minimum energy trigger,
that renders it finite. One might naively think that these minor details should make
small contributions (vanishing as E0 → 0 or δ0 → 0). However, we shall see that
the energy threshold, E0, becomes logarithmically important at NNLO, and we also
argue that the cell size, δ0, will at NNNLO. This can be dangerous for (at least) three
reasons: firstly, it means that anyone making a calculation must know the very precise
definitions of how the data are treated – what size and shape the calorimeter cells are,
what energy they trigger at, whether they are preclustered, what preprocessing is done,
etc, and must implement them in the parton-level calculation; secondly, since E0 and
δ0 are rather small, higher-order perturbative corrections are expected to be large, as
are (power-suppressed) hadronization corrections, rendering the resulting calculations
unreliable; and finally in some cases, the features that render the observable finite seem
so minor that they are not reported at all or considered part of the experimental set-up
and ‘corrected for’, i.e. an almost unsafe definition is ‘corrected’ to an unsafe one.

This problem was first encountered by Kilgore and Giele[10]. In their calculation
of three jets at NLO, they ignored details of the calorimeter, effectively setting E0 =
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δ0 = 0, and encountered an infrared divergence arising from the separation of three
nearby partons, one of which is arbitrarily soft, into one or two jets. It turned out
that in the case of the three-jet analysis they are concerned with, this situation was
rendered ‘almost unsafe’ by an additional cut imposed by CDF – the jets should be well
separated. Once this is applied, the jet cross section can be calculated order by order
in perturbation theory. To our knowledge, no such cut is made in the inclusive jet cross
section measurement, so unless one explicitly includes calorimeter information in the
calculation it is genuinely unsafe, which would first manifest itself at NNLO.

2.3 Jet cross sections

As a concrete example of the above considerations, we calculate the inclusive jet cross
section up to NNLO accuracy (up to three partons per jet). We use an extremely simple
model, which is certainly too simple for quantitative predictions, but which is sufficient
to illustrate the problems of infrared and collinear safeness, since it is based on the
soft and collinear approximations. We consider a gluon-only world, in which the LO
inclusive gluon production cross section is

dσ0

dpt dη
=
An−3

pn
t

, (6)

where A is an arbitrary parameter with dimensions of energy, and n is of order 5 for
typical pt values of interest. We consider the double-logarithmic approximation (DLA),
but with some modifications: energy-momentum is conserved at vertices according to
Eq. (1); strict angular ordering is imposed. The former is two logarithms down on the
DLA, while the latter is only one, but both are essential for making simple numerical
treatments. In this approximation, the coupling does not run.

We also simplify the kinematics, by assuming that the η × φ plane is infinite in all
directions. Soft radiation is limited to a cone of size Rmax. For concreteness, we set
Rmax = 2, although any size considerably greater than R would give similar results.

For the sake of having a simple quantity to calculate, we consider the fully inclusive
jet cross section:

σ(ptmin) ≡
∫

∞

ptmin

dpt

dσ

dpt dη

∣

∣

∣

∣

∣

η=0

. (7)

Clearly the LO cross section is σ0 = 1
n−1

An−3/pn−1
tmin. In all numerical results we set

ptmin = 50 GeV, although in this simple model, the dependence of the higher order
corrections on ptmin is extremely weak.

At NLO, the DLA real contribution is:

dσ1R = σ0
2CAαs

π

dr

r
Θ(Rmax − r)

dz

z

dϕ

2π
, (8)

and the virtual contribution is:

σ1V = −σ0
2CAαs

π

(

∫ Rmax

0

dr

r

∫ 1

0

dz

z
− V

)

. (9)
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Each is separately divergent, such that the sum of the two is finite for any infrared safe
jet definition. Note that we have inserted a completely arbitrary finite virtual term to
emphasize the arbitrariness of the overall normalization. In the numerical plots we set
V = 1, which roughly reproduces the normalization of the full NLO calculation.

For any of the definitions above, the results are the same:

σ1 =
2CAαs

π

∫

∞

ptmin

dptjet

∫

∞

0
dpt

An−3

pn
t

(

∫ Rmax

R

dr

r

∫ 1

0

dz

z
{

δ(ptjet − zpt) + δ(ptjet − (1 − z)pt) − δ(ptjet − pt)
}

+ V δ(ptjet − pt)

)

. (10)

The first two terms in curly brackets are contributions where the two real partons are
separate jets, while the third is part of the virtual contribution – the rest has exactly
cancelled the real emission contribution in which the two partons are in the same jet.
Clearly the last two terms cancel as z → 0, and the whole thing is finite. Integrating
out pt on the δ-functions, we obtain:

σ1 =
2CAαs

π

∫

∞

ptmin

dptjet
An−3

pn
tjet

(

∫ Rmax

R

dr

r

∫ 1

0

dz

z

{

zn−1 + (1 − z)n−1 − 1
}

+ V

)

(11)

= −σ0
2CAαs

π

(

log
Rmax

R

{

ψ(n− 1) + γE

}

− V
)

. (12)

For n = 5, the curly bracket gives 11/6, although of course this is nothing to do with
the usual collinear 11/6.

We can see that the DLA is not strictly a good enough approximation of this cross
section, since all z values contribute equally to the final result, yielding only a single
logarithm (except for large n, where ψ(n − 1) ∼ log n). Thus we should include hard
gluon corrections and gluon splitting to quark-antiquark pairs. However, it is perfectly
sufficient for our illustrative purposes.

Moving to NNLO, the double-real emission cross section is given by:

dσ2(2) = σ0

(

2CAαs

π

)2 dr1
r1

Θ(Rmax − r1)
dz1
z1

dϕ1

2π

dr2
r2

Θ(r1 − r2)
dz2
z2

dϕ2

2π

+ σ0

(

2CAαs

π

)2 dr1
r1

Θ(Rmax − r1)
dz1
z1

dϕ1

2π

dr2
r2

Θ(r1 − r2)
dz2
z2

dϕ2

2π
. (13)

Although the two terms look identical, they correspond to configurations where the
second gluon is emitted from the hard (first term) or soft (second term) gluon from the
first splitting (i.e. they would have different colour factors if the initiating parton was a
quark, C2

F and CFCA respectively). The kinematics have to be calculated accordingly.

The single-real emission cross section is given by:

dσ2(1) = −σ0

(

2CAαs

π

)2 dr1
r1

Θ(Rmax − r1)
dz1
z1

dϕ1

2π

(

∫ Rmax

0

dr2
r2

∫ 1

0

dz2
z2

− V

)

−σ0

(

2CAαs

π

)2 dr1
r1

Θ(Rmax − r1)
dz1
z1

dϕ1

2π

∫ r1

0

dr2
r2

∫ 1

0

dz2
z2
, (14)
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Figure 1: The radius dependence of the inclusive jet cross section in the DØ jet algorithm
with E0 = 1 GeV in fixed-order (solid) and all-orders (dotted) calculations. The error
bars come from Monte Carlo statistics.

where the two terms are of the ‘C2
F ’ and ‘CFCA’ type respectively. Note that we do not

insert a finite virtual term in the ‘CFCA’-type term. Such a term could be absorbed
into the running coupling, which we do not keep track of here.

Finally, the no-emission cross section is given by:

dσ2(0) = σ0

(

2CAαs

π

)2 1

2

(

∫ Rmax

0

dr1
r1

∫ 1

0

dz1
z1

− V

)(

∫ Rmax

0

dr2
r2

∫ 1

0

dz2
z2

− V

)

, (15)

which is of the ‘C2
F ’ type only.

We have implemented this as a numerical integration, and find that the cone and
cluster algorithms give different results. We concentrate on the DØ algorithm, and ob-
tain the results shown in Fig. 1. Although the absolute normalization of the corrections
at each order is outside the validity of the DLA, their dependence on physical quantities,
like the jet radius, should be well modelled. We see that the LO to NLO correction blows
up at small R, and is not much better at NNLO (where it would diverge to positive
infinity if the finite cell size, δ0 = 0.1, did not provide a cutoff). This is due to large
logarithms of R, which arise at each order of perturbation theory, and would need to be
summed to all orders to give accurate predictions. This is what is done in the dotted
line, which is discussed in more detail in the next section.

In Fig. 2 we show the E0 dependence of the cross section. It is clear that the
dependence does not disappear as E0 → 0 at NNLO. This, then, is the proof that the
DØ jet algorithm is ‘almost unsafe’, the safeness being rendered by the finite energy
threshold of the calorimeter. Clearly in the ideal world of a perfect calorimeter, with
zero threshold, we get an infinite cross section.

The strong E0 dependence can be easily understood. It arises from configurations
that have long been understood to be a problem in cone algorithms, where two partons
lie somewhere between R and 2R apart in angle, but sufficiently balanced in energy that
they are both within R of their common centre, defined by Eq. (1). This is illustrated

8



Figure 2: The seed cell threshold dependence of the inclusive jet cross section in the DØ
jet algorithm with R = 0.7 in fixed-order (solid) and all-orders (dotted) calculations.

(a) (b)

Figure 3: Illustration of the problem region for the iterative cone algorithm. In (a), there
are two hard partons, with overlapping cones. In (b) there is an additional soft parton
in the overlap region.

in Fig. 3a. According to the iterative cone algorithm, each is a separate jet, because
the cone around each seed cell contains no other active cells, so is immediately stable.
Although the two cones overlap, there is no energy in the overlap region, so the splitting
procedure is trivial, and it is classed as a two-jet configuration.

Now consider almost the same event, but with the addition of a soft parton, close
to the energy threshold E0, illustrated in Fig. 3b. If it is marginally below threshold,
the classification is as above, with the soft parton being merged with whichever hard
parton it is nearest. If on the other hand it is marginally above threshold, there is an
additional seed cell. The cone around this seed encloses both the hard partons and thus
a third stable solution is reached. Now the merging and splitting procedure produces
completely different results. In either the CDF or DØ variants the result is the same:
each of the outer jets overlaps with the central one, with the overlap region containing
100% of the outer one’s energy. Thus each is merged with the central one, and it is
classified as a one-jet configuration.
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The classification is different depending on whether or not there is a parton in
the overlap region with energy above E0. Since the probability for this to occur is
∼ 2CA

π
αs logET/E0, the inclusive jet cross section depends logarithmically on the en-

ergy threshold above which calorimeter cells are considered seed cells. Thus the DØ jet
definition is not fully infrared safe.

In fact, having seen this problem we can see that it will become even more severe
at the next higher order. Consider the probability that the soft parton splits into two
fairly collinear partons. If they are greater than δ0 apart, then they will fall into separate
calorimeter cells, and neither will be above E0, and so a one-jet configuration would be
flipped back to a two-jet one. The probability for this to occur depends logarithmically
on δ0, so the inclusive jet cross section will too (at NNNLO and beyond). Thus the DØ
jet definition is not fully collinear safe.

We should restress at this point that there is nothing special about the DØ algorithm
in this regard. This is a general problem of the iterative cone type of algorithm, when
used with parton directions or calorimeter cells as seed cells. We are picking on DØ
simply because they were kind enough to furnish us with full details of their algorithm.

Before moving on, it is also worth recalling how the k⊥ algorithm completely avoids
this issue, and remains infrared safe to all orders. Merging starts with the softest
(lowest relative k⊥) partons. Thus in the configuration of Fig. 3b, the soft parton is first
merged with whichever hard parton it is nearer. Only then is any decision made about
whether to merge the two jets, based solely on their opening angle. The algorithm has
completely ‘forgotten about’ the soft parton, and treats the configurations of Figs. 3a
and 3b identically. Thus, details of the calorimeter’s energy threshold become irrelevant,
provided it is significantly smaller than the jet’s energy.

2.4 All-orders cross section

In the previous section, we calculated the fully inclusive jet cross section in the DLA up
to NNLO. In fact it is possible to sum the resulting logarithms to all orders numerically.
This is done by constructing a parton shower algorithm, which iteratively applies the
structure seen in the first few orders of the previous section. We have implemented such
an algorithm, incorporating exactly the same conditions as in the fixed order calcula-
tions. The results were shown in Figs. 1 and 2. As anticipated, the poor behaviour
in the R-dependence at small R is tamed by the resummation. Surprisingly, the same
is true of the E0-dependence, which is much milder in the all-orders result than in the
NNLO result.

This can be understood as a Sudakov-type effect. Although the fraction of events
with a hard emission in the problem region is small, the probability of subsequent soft
emission into the overlap of the cones in those events is large, ∼ 2CA

π
αs logET/E0 ∼ 1.

This is precisely the logarithmic behaviour seen in the NNLO result of Fig. 2. However,
when going to the all-orders result, the probability of non-emission exponentiates, and
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we obtain

2CA

π
αs logET /E0 −→ 1 − exp

(

−
2CA

π
αs logET /E0

)

= 1 −
(

E0

ET

)

2CA

π
αs

, (16)

the much slower behaviour seen in the all-orders result of Fig. 2.

This result has a simple physical interpretation: in the ‘all-orders environment’, there
are so many gluons around that there is almost always at least one seed cell in the overlap
region and the two jets are merged to one. Recall that in our simple approximation,
the coupling does not run. If we retained the running coupling, this statement would
become even stronger, because the probability to emit soft gluons would be even more
enhanced.

It is precisely this effect that has lead to the belief that the merging issue is a rel-
atively unimportant numerical effect: in the experimental environment it is. However,
expanding out the exponential of Eq. (16) as an order-by-order expansion in αs, we
obtain large coefficients at every order, and no hope of well-behaved theoretical predic-
tions.

Thus, if we are to study the internal properties of jets quantitatively, we must solve
the overlap problem, to define jets in a perturbatively-calculable way.

2.5 The Rsep ‘solution’

It has long been realized that there is a problem with the iterative cone algorithm due
to overlapping cones. A ‘solution’ was proposed[14] as follows: We know that in real life
jets that have somewhat overlapping cones will get merged, owing to the fact that there
will always be a seed cell in their overlap region. So let’s pretend that we are using a
jet definition in which they are merged even if there were no seed cells. In other words,
let’s modify the jet definition used in the calculation, but not in the measurement.

This modification is made by introducing an adjustable parameter, called Rsep,
whereby if two partons are within an angle RsepR of each other, they are merged into
one jet (provided that they are sufficiently well balanced in energy to fit into the cone
of radius R around their common axis). Considerable success was claimed for this ‘so-
lution’ when the same value of Rsep gave a good fit to data on both the jet cross section
as a function of cone size, and the jet shape[14] (i.e. the internal structure of the jet,
discussed in the next section). With the advent of more plentiful, more precise, data,
it has become necessary to make Rsep a function of the event kinematics in order to fit
data[22].

In our opinion, this is no solution at all. It has a multitude of problems:

• We are calculating cross sections for one observable and comparing them with
measured cross sections for another. It is not clear what we learn from this.
In this sense the ‘NLO calculation’ should be considered a model rather than a
calculation of a physical cross section.
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• The ‘solution’ does not generalize in any obvious way to higher orders. This means
that we can never learn anything quantitative about the internal structure of the
jets, since these are only calculable to LO. Furthermore it means that even NLO
corrections to higher number of jets, such as the three-jet cross section, become
uncalculable3.

• The fact that we have ‘rescued’ the NLO calculation does not imply that it has
any formal validity. When calculating an infrared safe quantity, non-perturbative
corrections are suppressed by inverse powers of the hard scale, ET . However, by
calculating a quantity that is not infrared safe we have no way of knowing the size
of non-perturbative contributions. Even in the case of almost unsafe quantities,
we can only guarantee that non-perturbative corrections are suppressed by inverse
powers of E0. Since this is of order the hadronization scale, it can give rise to
100% corrections, and in any case gives corrections that do not get smaller as ET

gets bigger.

This last point means that the property of asymptotic scaling, normally expected of jet
cross sections, is broken. We should not be terribly surprised if NLO calculations do
not predict the energy-dependence of jet cross sections very well.

2.6 A solution

Shortly after the Rsep ‘solution’ was proposed, Steve Ellis proposed[18] a solution that
suffers none of the problems listed above. It is a simple modification to the algorithm
used in both the theoretical calculation and the experimental measurement:

After finding all possible jets using the seed cells, rerun the algorithm using
the midpoint of all pairs of jets found in the first stage as additional seeds4.

This means that the results become insensitive to whether there was a seed cell in the
overlap region, and hence to the energy threshold E0. Cross sections are well-behaved
and calculable order by order in perturbation theory, as shown in Fig. 4. Experimental
results would be little changed by this modification (compare the all-orders results of
Figs. 2 and 4), but the theoretical predictions would be enormously improved (compare
the NNLO results of Figs. 2 and 4).

It should be stressed that this does not completely remove the problem of merging
and splitting of overlapping cones. It merely relegates it to a procedural problem:
one should state clearly the procedure one uses, and apply it equivalently to theory
and experiment. Provided that that procedure uses information from all the jets in a
democratic way (i.e. not keeping track of which jets came from seed cells, and which
from the additional seeds), it will not spoil the improved properties of the algorithm.

3In this case, an additional cut on the separation of the jets renders the cross section calculable[10].
4To save computer time, it is sufficient to just do this for jet pairs that are between R and 2R apart.
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Figure 4: The radius dependence with E0 = 1 GeV (left) and seed cell threshold depen-
dence with R = 0.7 (right) of the inclusive jet cross section in the improved iterative
cone algorithm, in which midpoints of pairs of jets are used as additional seeds for the
jet-finding, in fixed-order (solid) and all-orders (dotted) calculations.

Figure 5: The ‘radius’ dependence of the inclusive jet cross section in the k⊥ jet algorithm
in fixed-order (solid) and all-orders (dotted) calculations.

2.7 A better solution

We finish this section by noting that using the k⊥ algorithm removes these problems
completely. It is fully infrared safe, and has no overlap problem, because every final-
state particle is assigned unambiguously to one and only one jet. We show results in
Fig. 5.

Unless there are factors of which we are unaware, abandoning the iterative cone
algorithm and using the k⊥ algorithm instead would be an even better solution than the
previous one.
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3 The jet shape

The jet shape is, at present, the most common way of resolving internal jet structure.
It is inspired by the cone-type jet algorithm, but its use is not restricted to cone jets.
It is defined by first running a jet algorithm to find a jet axis. The jet shape Ψ(r;R) is
then:

Ψ(r;R) =

∑

iET i Θ(r −Rijet)
∑

iET i Θ(R− Rijet)
, (17)

where the sum over i can be over either all particles in the event, as used by CDF and
DØ, or only those particles assigned to the jet, as used by ZEUS. We have found that
using cone-type jet definitions, there is little difference between the two (less than 10%
even at the jet edge). However, if the jet is defined in the k⊥ algorithm, we shall see
that there are strong reasons for preferring the definition in which the sum is only over
those particles assigned to the jet. For now, we concentrate on the more commonly-used
definition in which the sum is over all particles. Thus Ψ is the fraction of all energy
within a cone of size R around the jet axis that is within a smaller cone of size r, also
around the jet axis. Clearly we have Ψ(R;R) = 1, with Ψ(r;R) rising monotonically in r.

In this paper, we prefer to work in terms of the differential jet shape:

ψ(r;R) =
dΨ(r;R)

dr
. (18)

Thus ψ dr is the fraction of all energy within a cone of size R around the jet axis that
is within an annulus of radius r and width dr, centred on the jet axis.

To define ψ in a cross sectional form, imagine defining the single-particle production
cross section, differential in the particle ET and distance from the jet axis r,

dσ

dET dr
. (19)

ψ is then given by:

ψ(r;R) =

∫

dET ET
dσ

dET dr
∫R
0 dr

∫

dET ET
dσ

dET dr

. (20)

3.1 Leading order calculation

As we have mentioned several times already, the NLO matrix elements for the jet cross
section determine the jet shape at LO. However, it is important to note that in taking
the ratio in Eq. (20), both parts should be evaluated to the same order (LO in this
case). If the denominator is mistakenly evaluated to NLO, one gets artificially large
renormalization scale dependence. Compare

µ2 d

dµ2

A0α
3
s (µ)

B0α2
s (µ) +B1α3

s (µ) + 2β0B0α3
s (µ) logµ2/E2

T

= −3β0
A0

B0

α2
s (µ) + O(α3

s ), (21)
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with the correct LO result,

µ2 d

dµ2

A0α
3
s (µ)

B0α2
s (µ)

= −β0
A0

B0

α2
s (µ) + O(α3

s ). (22)

This mistake was made in a recent paper on jet shapes[15], which we discuss in more
detail in a later section.

We can avoid having to use the virtual matrix elements at all, by noting that they
only contribute to ψ(r;R) at exactly r = 0. Thus we can calculate ψ(r;R) for all r > 0
from the tree level matrix elements and then get the contribution at r = 0 from the fact
that it must integrate to 1, i.e.

ψ(r;R) = δ(r) +
(

ψtree level(r;R)
)

+
, (23)

where f(r;R)+ is a distribution defined in terms of the function f(r;R) by f(r;R)+ =
f(r;R) for r > 0 and

∫ R
0 f(r;R)+dr = 0. We do not therefore need a full NLO Monte

Carlo program like JETRAD[7], but instead use the tree level matrix elements from
NJETS[23] with our own phase space generation, adapted to be efficient for jet shapes.

It is also useful to have an analytical approximation to the matrix elements to work
with. This can be done using the modified leading logarithmic approximation (MLLA),
in which we have contributions from soft and/or collinear final-state emission, and soft
initial-state emission.

The probability of final-state emission from a parton of type a is given by

dPa =
1

2

∑

b

αs

2π

dρ2

ρ2

dϕ

2π
dz Pa→bc(z), (24)

where ϕ is an azimuth around the jet axis, which we always integrate out from now on, z
is the fraction of a’s energy carried by b, and ρ is the opening angle between the partons.
The phase space limits come from the requirements that both partons be within R of
the jet axis, and the opening angle be less than RsepR. Thus we have

ψa(r) =
∑

b

αs

2π

2

r

∫ 1−Z

0
dz z Pa→bc(z), (25)

where

Z =

{

r
r+R

if r < (Rsep − 1)R,
r

RsepR
if r > (Rsep − 1)R

. (26)

Thus we obtain for a quark jet,

ψq(r) =
CFαs

2π

[

2

r

(

2 log 1
Z
− 3

2
(1 − Z)2

)

]

+
, (27)

and for a gluon jet

ψg(r) =
CAαs

2π

[

2

r

(

2 log 1
Z
− (1 − Z)2

(

11
6
− 1

3
Z + 1

2
Z2
))

]

+

+
TRNfαs

2π

[

2

r
(1 − Z)2

(

2
3
− 2

3
Z + Z2

)

]

+
, (28)
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where Nf is the number of flavours.

Note that owing to the supersymmetric relations between the splitting kernels[24],
for Nf = CA, we have ψq(r)/CF = ψg(r)/CA. Thus even for Nf = 5, we expect the
shape functions to be extremely similar in shape, and only differ in normalization.

There is also a contribution from initial-state radiation that happens to be inside
the jet cone by chance. As shown in [25], this is essentially the same for both quark and
gluon jets, and is given by a basic dipole formula (such emission can always be treated
as soft), with colour factor C ∼ CF ∼ CA/2. We set C = CA/2 for all numerical results.
We have

dP = 4
Cαs

2π
dη

dφ

2π

dω

ω
, (29)

where η, φ and ω are the pseudorapidity, azimuth around the beam direction, and energy
of the gluon respectively. In terms of the jet variables, this gives

dP = 4
Cαs

2π
ρdρ

dz

z
, (30)

and hence

ψi(r) =
Cαs

2π

[

2r
(

1

Z2
− 1

)]

+
. (31)

Note that although there is nothing special about the jet direction, as far as initial-state
emission is concerned, this is singular as r → 0, r/Z2 → R2/r. This is due to the fact
that soft partons anywhere in the jet will pull the jet axis away from the hard parton
direction.

Since ψi is the same for both quark and gluon jets, it spoils the nice symmetry
between quark and gluon jets, since we now have symbolically

ψq = CF (FSR) + C(ISR), (32)

ψg = CA(FSR) + C(ISR). (33)

In Fig. 6 we show the results of both the full LO matrix element integration, and our
analytical approximation to it, for the k⊥ algorithm (Rsep = 1). As with all the numerical
results in this paper, we use the CTEQ4M parton distribution functions[26]. We see
remarkably good agreement between the full result and the analytical approximation.
The contribution from initial-state radiation is shown separately, and is clearly essential
for this good agreement.

As Rsep increases, the approximation gets somewhat worse, as we see in Fig. 7, where
we show results for the improved cone algorithm (Rsep = 2). This is not too surprising,
as we are using the soft and collinear approximations for the kinematics, and Rsep = 2
allows hard partons to be up to almost 120◦ apart in azimuth. The approximation is
still pretty good though (and is still very good at Rsep = 1.3 for example).

To show that the good agreement is not just fortuitous at our chosen ET value,
we also show in Fig. 8 the results at high ET , where the quark/gluon jet mix is very
different.
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Figure 6: The jet shape at leading order in the k⊥ algorithm for a 50 GeV jet at η = 0
(left) and η = 3 (right), according to the exact tree-level matrix elements (points) and
our analytical formulae (curves). The contributions of the initial-state component of the
latter are shown separately as the dotted curves.

Figure 7: As Fig. 6, but in the improved cone algorithm.

Figure 8: The jet shape at leading order in the k⊥ (left) and improved cone (right)
algorithms for a 250 GeV jet at η = 0. Points and curves are as in Fig. 6.
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Figure 9: The jet shape in the DØ jet algorithm in fixed-order (solid) and all-orders
(dotted) calculations. In the NLO case, we use E0 = (from top to bottom) 0.01, 0.1, 1
and 10 GeV.

Figure 10: The jet shape in the improved cone (left) and k⊥ (right) jet algorithms in
fixed-order (solid) and all-orders (dotted) calculations.

3.2 Higher orders

Having seen that the analytical results approximate the full LO matrix element well, we
move to higher orders to see how much we can improve them. We use the simple DLA
of Sects. 2.3 and 2.4 to estimate the effects of higher order corrections.

In Fig. 9 we show the jet shape in the iterative cone algorithm. We see that it is
strongly dependent on the seed cell threshold, as anticipated from the arguments of the
previous section. We neglect it from further discussion.

In Fig. 10 we show the equivalent results in the improved cone algorithm and the k⊥
algorithm. In the improved cone algorithm, the NLO corrections are rather large (recall
that the normalization is outside the control of this approximation, and we should look at
the shape of the corrections only). Close to the jet edge, they diverge to negative infinity,
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Figure 11: The jet shape in the k⊥ jet algorithm at NLO (solid and dashed) and all
orders (dotted). The solid and upper dotted curve use all particles in the event, the
dashed and lower dotted curve use only those particles assigned to this jet.

a typical ‘Sudakov shoulder’ effect[27], analogous to the C-parameter distribution in
e+e− annihilation for C ∼ 3

4
. The corresponding logarithms of (R−r) must be resummed

to all orders for a reliable prediction. The correction in both algorithms becomes large
and negative at small r, which we discuss in more detail in Sect. 3.5.

In the k⊥ algorithm, the NLO corrections diverge to positive infinity near the edge
of the jet. If we take a close-up view of the region r ∼ R, as shown in Fig. 11, we see
that there is a corresponding divergence to negative infinity just outside the jet edge. In
the region r ∼ R, the NLO corrections are dominated by events in which a hard gluon
just outside the jet radiates a soft gluon, possibly into the jet. One can approximate
this region analytically, and obtain

ψ(r) ∼

{

+ 1
R

log R
R−r

r < R

− 1
R

log R
r−R

r > R
, (34)

exactly as seen in Fig. 11. Such terms would again have to be summed to all orders for
a reliable prediction. We also see that even in the all-orders calculation, ψ(r) changes
very rapidly with r for r ∼ R, so this region would always be difficult to model correctly.

In fact, this is an artifact of the fact that we define the jet shape using all particles
in the event. If we instead use only those particles assigned to the jet, we obtain a NLO
result that is continuous at r=R, although it still has an infinite change in slope there,

ψ(r) ∼

{

1
R
− R−r

R2 log R
R−r

r < R
1
R
− r−R

R2 log R
r−R

r > R
, (35)

again as seen in Fig. 11. This still indicates the formal need for a resummed calcula-
tion, but the numerical result of that resummation is a relatively minor correction, as
indicated by the difference between the all orders and NLO curves. Note that the all
orders calculation is smooth in this case.

To avoid these large higher order terms, we recommend that in future the jet shape
be defined using only those particles assigned to the jet by the jet algorithm. Using this
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Figure 12: Effect of running coupling on the shape of a 50 GeV jet in the k⊥ (left) and
improved cone (right) algorithms: µ = ET (dashed), µ = ET/4 (dotted) and the ‘best’
scale defined in the text (solid).

definition, we see that for the k⊥ algorithm, the NLO curve is a good approximation to
the all-orders curve for all r ∼> 0.2. For r ∼< 0.9 the difference between the two definitions
is small.

3.3 Scale of the running coupling

As is well known, the ‘best’ scale to use for the running coupling is the maximum
transverse momentum of emitted gluons, relative to the axis of the emitter. For the
jet shape at angle r, this is different for initial-state and final-state emission5. For the
final-state case it is µ = r(1 − Z)ET , where ET is the transverse momentum of the jet,
and for the initial-state case it is µ = (1 − Z)ET .

We show the results in Fig. 12. Relative to the default scale, µ = ET , this makes a big
difference, but much of that difference can be absorbed by choosing instead µ = ET/4.
Then only at very small r does it become important.

3.4 Power corrections

In incorporating running coupling effects, one can go even further, by including αs(qt)
inside the z integration. However, since the z integral runs from 0 to 1−Z, this involves
integrating over the Landau pole, which induces power corrections.

We basically follow the philosophy of Dokshitzer and Webber[28], and begin by

5This is why it is dangerous to use such schemes in exact matrix element calculations, since they do
not separate emission into different components.
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reviewing their method. Consider an integral

Ip ≡
1

Qp+1

∫ Q

0
dk kp αs(k). (36)

Making a perturbative expansion, one obtains

Ip,pert ≡
1

p+ 1

(

αs + 2β0α
2
s

(

1

p+ 1
+ log

µ

Q

)

+ O(α3
s )

)

, (37)

where αs ≡ αs(µ) and β0 = (11CA − 2Nf )/12π.

If one introduces the notion of an infrared-finite coupling, then the integral

ᾱp(Q0) ≡
p+ 1

Qp+1
0

∫ Q0

0
dk kp αs(k), (38)

is a well-defined, but fundamentally non-perturbative, quantity. Thus we can split the
integration region of Eq. (36) in two, and obtain

Ip ≡ Ip,pert + Ip,pow, (39)

with

Ip,pow =

(

Q0

Q

)p+1
1

p+ 1

(

ᾱp(Q0) − αs − 2β0α
2
s

(

1

p+ 1
+ log

µ

Q0

)

+ O(α3
s )

)

. (40)

Two values of ᾱ0(Q0) were given in [28], fitted from the average value of thrust in e+e−

annihilation:

ᾱ0(2 GeV) = 0.52 ± 0.03, (41)

ᾱ0(3 GeV) = 0.42 ± 0.03. (42)

These numbers actually refer to αs defined in the physical scheme, rather than MS, but
the difference is smaller than the errors, so we ignore it. Also, their analysis is only
strictly valid when the NLO correction is included, which it is not here. Nevertheless,
we use it to get a rough estimate of the importance of these corrections.

In our case, for final-state emission, we have

ψ(r) =
1

2π

2

r

∫ 1−Z

0
dz z (P (z) + P (1 − z))αs(zrET ) (43)

∼
2Ci

2π

2

r

1

rET

∫ r(1−Z)ET

0
dk αs(k), (44)

where Ci = CF (CA) for a quark (gluon) jet, and the approximation corresponds to small
z (i.e. small k). Thus we have

ψpow(r) =
2Ci

2π

2

r

(

Q0

rET

)

(

ᾱ0(Q0) − αs − 2β0α
2
s

(

1 + log
µ

Q0

))

. (45)
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Figure 13: Effect of power corrections on the shape of a 50 GeV jet in the k⊥ (left)
and improved cone (right) algorithms: no corrections (dashed), Q0 = 2 GeV (solid) and
Q0 = 3 GeV (dotted).

For initial-state emission, we have

ψi(r) ∼
2C

2π
2r

1

ET

∫ (1−Z)ET

0
dk αs(k), (46)

and hence

ψipow(r) =
2C

2π
2r
(

Q0

ET

)

(

ᾱ0(Q0) − αs − 2β0α
2
s

(

1 + log
µ

Q0

))

. (47)

Note that near the core of the jet, the initial-state term is completely insignificant, while
near the edge of the jet it is comparable to the final-state term.

Adding these non-perturbative corrections to our previous perturbative results, we
obtain the results of Fig. 13. We see that the power corrections are sizeable, comparable
to the anticipated size of NLO corrections. The curves for the two values of ᾱ0(Q0) are
completely indistinguishable – a cross-check of the consistency of the calculation.

In this context, it is relevant to question what Rsep really means, if anything. The
value usually used, Rsep = 1.3, was obtained by fitting a LO calculation to the data,
and perhaps it is double counting to continue to use this value when power corrections
are included. In fact, we find that the normalization of the power-corrected LO with
Rsep = 1.1 is comparable to that of LO with Rsep = 1.3.

3.5 Sudakov resummation

In the region r → 0, the energy profile function develops large logarithms at all higher
orders, ∼ αn

s log2n−1 r. These can be resummed to at least MLLA accuracy and, we
expect, to NLLA. We work to MLLA accuracy, i.e. incorporating the ∼ αn

s log2n−2 r
terms as well, but none beyond that.
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As usual in these types of calculations, it is easiest to work in terms of the total
energy within r, Ψ(r), rather than the energy distribution at r, ψ(r), and then differ-
entiate afterwards. Since to MLLA soft gluons do not carry away any momentum, it
is straightforward to see that this is actually the same as the probability that the hard
parton remains within r. To leading log accuracy, this is given by

P (< r) = exp
(

−P1(> r)
)

, (48)

where P1(> r) is the leading logarithm of the leading order in αs probability that the
hard parton is outside r. This is improved to MLLA accuracy simply by including the
next-to-leading logarithm and running coupling in P1, giving

P1q =
∫ RET

rET

dqt
qt

αs(qt)

π

(

2CF log
RET

qt
−

3

2
CF

)

, (49)

for quark jets, and

P1g =
∫ RET

rET

dqt
qt

αs(qt)

π

(

2CA log
RET

qt
−

1

2
b0

)

, (50)

for gluon jets, where b0 = 4πβ0 = 11
3
CA − 4

3
TRNf . Note that to this accuracy, all jet

definitions are the same, and independent of Rsep. This is because we can take the small
r phase space limit, Z ∼ r/R.

We obtain6

Pq(r) = exp
{

2CF log
R

r
f1

(

2αsβ0 log
R

r

)

− 3
2
CF f2

(

2αsβ0 log
R

r

)}

, (51)

Pg(r) = exp
{

2CA log
R

r
f1

(

2αsβ0 log
R

r

)

− 1
2
b0 f2

(

2αsβ0 log
R

r

)}

, (52)

where αs = αs(RET ), and

f1(λ) =
1

2πβ0λ
(log(1 − λ) + λ) , (53)

f2(λ) =
1

2πβ0
log(1 − λ). (54)

Differentiating with respect to r, we obtain

ψq =
αs(rET )

2π

2

r

(

2CF log
R

r
−

3

2
CF

)

Pq, (55)

ψg =
αs(rET )

2π

2

r

(

2CA log
R

r
−

1

2
b0

)

Pg. (56)

Noting that Pq = Pg + O(αs) = 1 + O(αs), it is straightforward to see that these agree
with the small-r limits of the functions derived earlier.

6Note that these results are identical to those of [29] for the energy-energy correlation in the back-
to-back region of e

+
e
− annihilation, evaluated to the same accuracy (i.e. their Eq. (10) plus the second

line of Eq. (11)), except that theirs is a factor of 2 larger, because they have two jets while we have one.
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Figure 14: Effect of resummation on the shape of a 50 GeV jet in the k⊥ (left) and
improved cone (right) algorithms: with (solid) and without (dashed) resummation of
logarithms of R/r.

The initial-state radiation that happens to be within the jet also contributes to
MLLA accuracy, so must also be included. To fully include this to NLLA accuracy
would require a more complicated analysis since, as noted earlier, the ISR and FSR
contributions have different coupling effects. To MLLA however, it can be done in a
straightforward way, simply by modifying 3

2
CF → 3

2
CF − C R2 and 1

2
b0 →

1
2
b0 − C R2.

We match these functions with their leading order counterparts whenever we use
them (i.e. we subtract off their leading order expansions in αs). In principle this could
induce unphysical behaviour at large r, since these resummed formulae are not valid
there, but in fact we find that they tend to zero like R−r at r → R, where the leading
order result is either non-zero, for Rsep > 1, or has the same behaviour, for Rsep = 1.
Thus we do not have to take any special precautions at the edge of phase space.

We show the results in Fig. 14, where the resummation is seen to be crucial at small
r, taming the unphysical rise in ψ, but it does not make a great deal of difference for
r > 0.2, where most of the data are. Note that our result should not be trusted for
very small r, i.e. for λ ∼ 1, since higher order effects such as the emission of a pair of
gluons with balancing transverse momentum must then become important[30]. This is
signalled by the divergence of f1 and f2 at λ = 1.

One might expect that the integral inside the form factor receives power corrections,
as has been observed for some event shapes in e+e− annihilation[31]. However, following
the method of [31], one finds only sources of 1/E2

T corrections in our case, which are
insignificant relative to the 1/ET terms already discussed. Thus we do not bother
including them. We do however assume that the leading 1/ET corrections from final-
state radiation are suppressed by the perturbative form factor, since soft gluon emission
should only be enhanced at small angles in events in which the jet initiator has remained
at a small angle itself.

Combining the power corrections with the all-orders resummation we obtain our
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Figure 15: Total effect of running coupling, power corrections and resummation on the
shape of a 50 GeV jet in the k⊥ (left) and improved cone (right) algorithms: LO (dashed)
and with everything (solid).

Figure 16: As Fig. 15 but for a 100 GeV jet.

Figure 17: As Fig. 15 but for a 250 GeV jet.
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final results for the jet shape at the Tevatron, shown in Figs. 15–17. Also shown for
comparison are the original leading order results. At ET = 50 GeV, the combined effect
of all the corrections we have considered roughly doubles the amount of energy near the
edge of the jet. Even at high transverse energy, ET = 250 GeV, it is increased by about
50%, although most of this is accounted for by running coupling effects.

4 The radial moment

It was recently proposed that the first moment of the jet shape, 〈r〉, is a good measure
of perturbative QCD. Since this is simply the area under the curves of the previous
section, we are in a good position to calculate 〈r〉 and compare our results with those
of [15].

We can again make the simple analytical approximation of the previous section, and
obtain

〈r〉q =
CFαs

2π
R
[

8 logRsep + 2 + 6/Rsep − 3Rsep − 2/R2
sep

]

+ 〈r〉ISR, (57)

〈r〉g =
CAαs

2π
R
[

8 logRsep + 2
3

+ 8/Rsep + 4
3
/R3

sep −
2
5
/R4

sep − 4/R2
sep −

14
5
Rsep

]

+
TRNfαs

2π
R
[

8
3
− 4/Rsep + 4/R2

sep −
8
3
/R3

sep + 4
5
/R4

sep −
2
5
Rsep

]

+ 〈r〉ISR, (58)

〈r〉ISR =
Cαs

2π
R3
[

4R2
sep −

4
3
R3

sep −
4
3

]

. (59)

Note that these are the same as in [15], except that they neglected the initial-state
contribution7. For R = 1, Rsep = 1.3, this gives a contribution of 25% to gluon jets and
45% to quark jets, so is clearly important in determining the ET -dependence of the jet
shape.

In Fig. 18 we show the dependence of our results on the renormalization and factor-
ization scales. We see that again the analytical approximation works very well, agreeing
with the exact matrix element calculation to within 5% everywhere, and considerably
better at low ET where the data lie at present, so we use it for the remainder of this
section. In this approximation, the only dependence on the factorization scale is the
changing mix of quark and gluon jets. Note that our scale-dependence is overall much
smaller than that of [15], owing to the fact that we consistently truncate at LO, whereas
they include a partial set of NLO terms, as illustrated in Eqs. (21) and (22).

Turning to the improvements we made for the jet shape distribution in the previous
section, we find that in the radial moment there are no large logarithms to resum, so
neither the running coupling nor the Sudakov resummation make any formal difference to
the results (although it can be seen from Figs. 12 and 14 that they do make considerable
numerical difference). However, power corrections are extremely important, as discussed

7This comment applies to the analytical results with which they illustrate their argument. All their
numerical results use the exact matrix elements so do correctly include this contribution.
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Figure 18: Dependence of the radial moment on the factorization and renormalization
scales, µ. Solid = ratio of µ=ET to µ=ET/2, dashed = µ=ET/4 to µ=ET/2, with
R= 0.7, Rsep = 2, and CTEQ4M pdfs with αs(MZ) = 0.116. The dotted curves are the
same but with the numerator evaluated using our analytical approximation.

in [15]. Using our approach, we can estimate the power corrections as

〈r〉 ∼
4Ci

2π

∫ R

0
dr
∫ 1

0
dz αs(zrET ) (60)

=
4Ci

2π

∫ RET

0

dk

ET

αs(k) log
RET

k
, (61)

and hence

〈r〉pow =
4Ci

2π

1

2β0αs(RET )

(

Q0

ET

)

(

ᾱ0(Q0) − αs − 2β0α
2
s

(

1 + log
µ

Q0

))

. (62)

From the initial-state contribution, we only find 1/ET corrections that are not enhanced
by the extra logarithm, so we can neglect them. Comparing our result with [15], we
find a big difference. Their power correction is ∼ 1/〈r〉LO ∼ 1/Ciαs(ET ) while ours is
∼ Ci/αs(ET ). Therefore their hadronization corrections are smaller for gluon jets than
quark jets, in contrast with what one would expect from a simple colour tube model[32],
in which a gluon jet is attached to two colour tubes and a quark jet is attached to one.
Thus one would näıvely expect twice the correction for a gluon jet than for a quark jet.
This is in agreement with what we find, 〈r〉gpow/〈r〉qpow = CA/CF = 9/4. This can be
expected to affect the ET dependence, since the flavour mix changes considerably with
ET .

We have repeated the fit to the data collated in [15] using our results. Following their
approach, we multiply the LO prediction by a K factor that is allowed to vary in the fit.
Fixing Rsep = 1.3 and µ = ET/2, we obtain a good fit to the data, as shown in Fig. 19.
Setting Q0 = 2 GeV, we obtain K = 0.54 ± 0.06 and ᾱ0(2 GeV) = 0.55 ± 0.06. This is
in very good agreement with the results of [28], particularly bearing in mind that our
perturbative results are only LO while theirs were NLO. We also get good agreement
for Q0 = 3 GeV, with K = 0.52 ± 0.06 and ᾱ0(3 GeV) = 0.44± 0.04. In both cases the
values of K and ᾱ0 are strongly anticorrelated.
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Figure 19: The radial moment at the Tevatron. Data are from [11,12,15]. The dashed
curve is the leading order perturbative result, with R = 1, Rsep = 1.3 and CTEQ4M pdfs
with αs(MZ) = 0.116. The solid curve is our fit to the data. The dotted curve is the
perturbative component of the fit.

It is interesting to note that although our LO results are considerably larger than
those in [15], presumably because of the partial set of NLO terms they include, our
K factor comes out almost identical to theirs. This is presumably a reflection of the
fact that the ET dependencies of the power-suppressed terms are considerably different
owing to the different flavour dependencies. If our perturbative contribution is forced
to be as small as theirs, the resulting ᾱ0 does not agree with [28].

One might worry about how far from unity the fitted value of K is. However, we
have already argued in the previous section that with current jet definitions one expects
large uncertainties and large higher order corrections, so we are not unduly worried. In
fact in this context it is worth pointing out that we can get an equally good quality of
fit, with comparable ᾱ0 values, for any Rsep between 1 and 2. Any change in Rsep is
compensated by a change in K in the fit. It is hard to draw any quantitative conclusions
without improved jet definitions and a full NLO calculation.

5 Summary and discussion

In this paper we have tried to examine all the important effects associated with predict-
ing the jet shape distribution in hadron collisions. In doing so, we are examining the
details of how a hard parton turns into a jet of hadrons. We have estimated that large
corrections arise from high orders in perturbation theory and from non-perturbative ef-
fects. Traditionally, this has been regarded as a reason to shy away from looking inside
jets, but we would like to advocate exactly the opposite view: the parton→hadrons tran-
sition is one of the most interesting outstanding questions in QCD, and it is precisely
because these effects are large that we should look inside jets to study them. Hadron
collisions make a perfect place to make such studies, because they are a source of high
rates of jets over a very wide range of jet scales in the same experiment.
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However, we have also emphasized the importance of infrared safe jet definitions.
These are essential, because in order to study the onset of non-perturbative effects, we
must have a perturbative ‘background’ that is well understood and under control. If
we use an infrared unsafe jet definition, then the whole process is non-perturbative,
and we have no ‘solid ground’ to start from. Furthermore, if one wants to use the
jets for perturbative jet physics, for example to measure the inclusive jet cross section,
it is important that the definition be safe to all orders, not just the order to which
the theoretical calculations are carried out. With an infrared safe jet definition, non-
perturbative corrections are guaranteed to be suppressed by (at least) one power of
‘1 GeV’/ET , while if unsafe behaviour arises at any higher order there are no such
guarantees. In particular, in an unsafe (or ‘almost unsafe’) algorithm, there is no reason
to expect the cross section to show the same scaling with energy as the perturbative
calculation.

We have critically examined the current norm in hadron collider jet definitions:
the iterative cone algorithm. We have shown that it becomes unsafe at next-to-next-
to-leading order for jet cross sections, which means next-to-leading order for internal
jet properties. Since next-to-leading order is the minimum required for quantitative
analysis, this means that using current jet definitions one can never probe the internal
structure of a jet in a quantitative way. We therefore recommend that:

• Experiments should abandon cone-based algorithms, and use the version of the k⊥
algorithm adapted to hadron collisions[16,21].

• If for some reason this is not possible, they should improve the cone-based algo-
rithms as discussed in Sect. 2.6. It would help ensure that the same definition
is used in theory and experiment if the experiments made their jet algorithms
publicly available.

We also discussed a ‘solution’ that purported to cure these problems: the introduc-
tion of an Rsep parameter. In our view, this has obscured the whole subject for several
years, by giving the impression that leading order perturbative QCD gave a good de-
scription of data on the internal structure of jets, when we have absolutely no right to
expect it to. We have shown that higher order corrections and non-perturbative cor-
rections can each be expected to be as large as 50% in some phase space regions, so
it would be a miracle if the leading order predictions gave a good fit to data. At any
given phase space point, we can mask all our ignorance simply by adjusting Rsep, and
only when we study the dependence on the jet kinematics do we get found out. This
is illustrated in Fig. 19 for example, where it is clear that any one of the points could
be fit by varying Rsep (i.e. by shifting the dashed curve up or down by an arbitrary
amount) but the only ways to simultaneously fit all of them are either to abandon all
pretence that Rsep is related to the jet definition, and just treat it as a fit parameter
that is allowed to vary as an arbitrary function of the jet kinematics, or to realize that
there is more to the internal structure of jets than leading order perturbative QCD. It
is precisely what this ‘more’ is, that we have tried to explore in this paper.

In addition to the jet definition, we also discussed an ambiguity in the jet shape
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definition. In some experiments it is defined using all particles (that are close enough
to the jet axis) in the event, while in others it is defined using only those particles that
are assigned to the jet by the jet definition. For cone-type jet definitions there is little
to choose between them, but in the k⊥ algorithm the next-to-leading order corrections
are much better behaved in the latter case than the former (see Sect. 3.2). We therefore
recommend that:

• Experiments define the jet shape distribution using only those particles assigned
to the jet, and no other particles that happen to be nearby.

It is hoped that full next-to-leading order calculations will soon be available for
the jet shape, enabling quantitative analyses to be made for the first time. Next-to-
leading order has the advantage of modelling effects that happen near edge of the jet –
merging and splitting issues in cone algorithms and the raising of the ‘kinematic zero’
at r = R in the k⊥ algorithm. It also has a much better defined normalization, so
the difference between the data and the predictions will provide a strong constraint on
non-perturbative corrections.

We have made an approximate calculation of the next-to-leading order corrections.
Although it is too crude to predict the expected normalization, it should provide a good
model of the kinematic effects. We therefore predict that when the full calculation is
made, the following features will be found:

• The corrections in the iterative cone algorithm will be infrared unsafe (in the
method of [10] this will manifest itself as an smin dependence analogous to our E0

dependence in Fig. 9).

• In the improved cone algorithm, the corrections will be large and negative, diverg-
ing to negative infinity at both small and large r.

• In the k⊥ algorithm, the corrections will also diverge to negative infinity at small r.
At large r the results will depend critically on whether all particles are used (in
which case they will diverge to positive infinity), or only those particles in the jet
(in which case they will have a small cusp at r=R).

Once the next-to-leading order calculation is available, by far the largest missing
effects will be (at small r) higher order terms enhanced by logarithms of r and (at
medium to large r) non-perturbative power-suppressed corrections. In this paper we
have shown how to resum the large logarithms to modified leading logarithmic accuracy
(i.e. summing terms like αn

s log2n−1 r and αn
s log2n−2 r to all orders in αs), and we expect

that this can be extended to a full next-to-leading logarithmic resummation. We have
also calculated in the Dokshitzer-Webber approach the effect of power-suppressed terms
on the jet shape distribution. Although these depend on fundamentally non-perturbative
parameters, in their approach these parameters are postulated to be universal, and have
already been measured in e+e− annihilation.
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It is important to note that both of these effects are independent of the precise
details of the jet definition (in the Rsep language, they are completely Rsep-independent).
Therefore it would be straightforward to combine them with the next-to-leading order
calculation, when available.

One source of power-suppressed terms that we have not discussed is the ‘underlying
event’, the soft hadrons that are sprayed around the event by secondary interactions
between the hadron remnants. As estimated in [15,33], this is less important than the
hadronization corrections that we have considered in this paper. Nevertheless, since
it has the same energy-dependence as the hadronization corrections, it cannot easily
be separated out, and at some level it must be understood before fine details of the
hadronization can be extracted. Jet shape analyses in photoproduction could prove
crucial from this point of view since one can ‘tune’ the underlying event in or out by
selecting different dijet kinematics. Unfortunately however, it seems that next-to-leading
order calculations for photoproduction are more distant than for hadron collisions.

In Ref. [15], the first moment of the jet shape distribution was proposed as a good
measure of jet shape. From the perturbative point of view, it has the disadvantage
that power corrections are larger in the radial moment (∼ 1/αsET ) than in the full
distribution (∼ 1/rET ). One advantage of the radial moment is that it is a single
quantity that can be plotted as a function of the jet kinematics, rather than a whole
distribution. It is also free from large logarithmic corrections. However, both these
statements can be equally applied to some measure such as the integral of rψ(r) from
0.25 to 0.75, which has power corrections that are smaller by a factor αs. In our opinion,
either approach throws away important dynamic information that is contained in the
shape of the distribution, and one would be much better off simply measuring ψ(r) over
as wide a range of r and event kinematics as possible, and then possibly neglecting the
extreme regions of small and large r in the comparison with theory, exactly as e+e−

annihilation experiments do with event shapes.

Despite our misgivings about the quality of the jet definition, and the use of only a
leading order calculation, we made a fit to the experimental data on the radial moment.
It is encouraging that the resulting non-perturbative parameter is in agreement with
that extracted from e+e− annihilation data. If confirmed with a full next-to-leading
order perturbative calculation, this would be a highly non-trivial test of the universality
implicit in the Dokshitzer-Webber approach. In particular, these coefficients have never
been measured in gluon-induced jets.

There has been a rapidly-increasing interest in the internal structure of jets in recent
years, which is now being spurred on by the promise that the next-to-leading order
corrections are imminent. We believe that jet studies in hadron colliders are at a similar
point to e+e− annihilation before the Z factories, and that we are about to enter a new
era of high precision predictions and measurements of a wide range of jet properties. To
realize this potential we need close collaboration between theorists and experimenters to
define observables that are sensitive to the interesting physics and feasible to calculate,
and measure, accurately. The jet shape distribution considered in this paper is only
scratching the surface.
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